

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА

Внедрение 3D-технологий в учебный процесс

Москва, 2020 г.

ВНЕДРЕНИЕ АДДИТИВНЫХ ТЕХНОЛОГИЙ В ОБРАЗОВАТЕЛЬНЫЙ ПРОЦЕСС ПО ПРИНЦИПУ «ОБРАЗОВАНИЕ ЧЕРЕЗ НАУКУ»

MT12		MT13		MT7		СМ9		CM10		91	Э2		
Лазерные технологии в машиностроении		Технологии обработки материалов		Технологии сварки и диагностики		Многоцелевые гусеничные машины и мобильные роботы		Колесные машины		Ракетные двигатели	Поршневые двигатели		
специалитет	магистратура	бакалавриат	магистратура	специалитет	магистратура	специалитет	магистратура	бакалавриат	специалитет	магистратура	специалитет	бакалавриат	магистратура
15.05.01	15.04.01	15.03.01	15.04.01	15.05.01	15.04.01	23.05.01 23.05.02	23.04.02	13.03.02	23.05.01 23.05.02	23.04.02	24.05.02	13.03.02 13.03.03	13.04.03
Проектирование технологических машин и комплексов	Машиностроение	Машиностроение	Машиностроение	Машиностроение	Проектирование технологических машин и комплексов	Наземные транспортно- технологические средства Транспортные средства специального назначения	Наземные транспортно- технологические комплексы	Электроэнергетика и электротехника	Наземные транспортно- технологические средства Транспортные средства специального назначения	Наземные транспортно- технологические комплексы	Проектирование авиационных и ракетных двигателей	Электроэнергетика и электротехника Энергетическое машиностроение	Энергетическое машиностроение

НОЦ «Центр аддитивных технологий» (МТ12)

НОЦ «Формула студент» (СМ10, СМ9) НОЦ «Поршневого двигателестроения и спецтехники» (Э2)

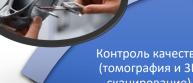
ОБОРУДОВАНИЕ ДЛЯ АДДИТИВНОГО ПРОИЗВОДСТВА, РАЗРАБОТАННОЕ В НОЦ «ЦАТ» МГТУ ИМ. Н.Э. БАУМАНА

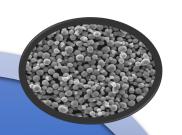
КЛП 400	
Рабочий ход стола (наибольшее перемещение), мм по оси "X" / по оси "Y" по оси "Z" по оси "A", градусов по оси "B", градусов Максимальный вес обрабатываемой детали, кг	610 / 610 610 +/-130 Непрерывно 500
Производительность (см3/час)	400
Стоимость, евро	0,95 млн
Размер пятна излучения в зоне обработки, мкм	300-3000
Точность деталей, мм	0,10,3 до 3000
Средняя мощность излучения, Вт	

Cill I	10
Рабочий объем, мм	110 x 110 x 110
Мощность, Вт	100
Скорость построения, см3/час	10
Толщина слоя, мкм	20-100
Минимальная толщина стенки, мкм	100-120
Точность, мм	0,1
Стоимость, тыс. евро	200

C/III-250				
Рабочий объем, мм	250 x 250 x 250			
Мощность, Вт	400			
Скорость построения, см3/час	15			
Толщина слоя, мкм	5-50			
Минимальная толщина стенки, мкм	25-120			
Точность, мм	0,05			
Стоимость, тыс. евро	650			

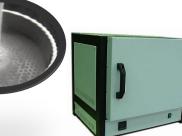
ЦИКЛ АДДИТИВНОГО ПРОИЗВОДСТВА НОЦ «ЦАТ» МГТУ ИМ. Н.Э. БАУМАНА





Контроль качества (томография и 3D сканирование)

порошковых материалов



Постобработка (термическая и механическая обработки)

Подготовка порошковых материалов

Печать (Селективное или коаксиальное лазерное плавление)

Подготовка 3D модели для печати (параметрический и бионический дизайн)



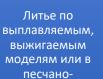
CREAFORM

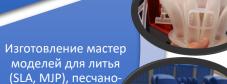
Контроль качества (томография и 3D сканирование)

полимерных

форм(ВЈР)

Подготовка 3D модели для печати (параметрический и бионический дизайн)



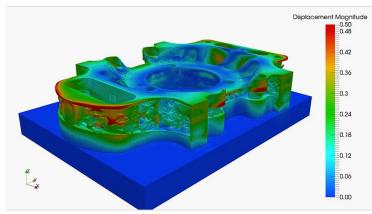


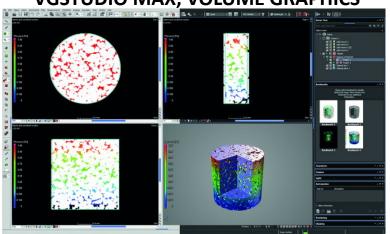
Постобработка (термическая и механическая обработки)

ЦИКЛ ЛИТЕЙНОГО ПРОИЗВОДСТВА

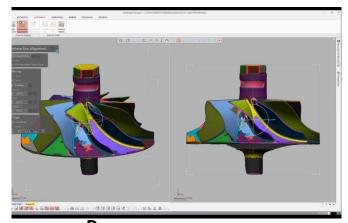
НОЦ «ЦАТ» МГТУ ИМ. Н.Э. БАУМАНА

3D SYSTEMS

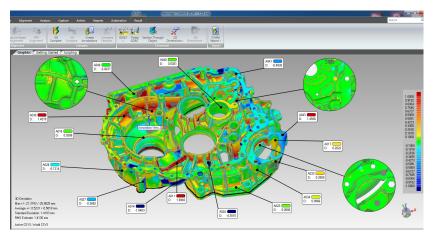



ПРОГРАММНЫЕ ПРОДУКТЫ, ИСПОЛЬЗУЕМЫЕ НОЦ «ЦАТ» МГТУ ИМ. Н.Э. БАУМАНА

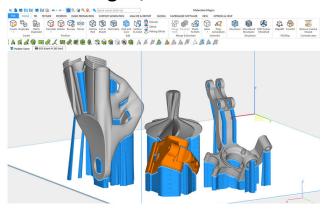
Netfabb Local Simulation 2020, Autodesk


Моделирование тепловых процессов

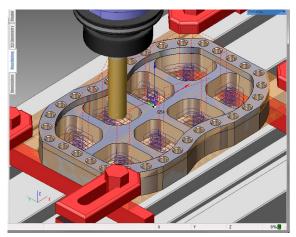
VGSTUDIO MAX, VOLUME GRAPHICS


Неразрушающие методы контроля

Geomagic Design X, 3D Systems


Реверс инжиниринг

Geomagic Control X, 3D Systems



Контроль геометрии изделия

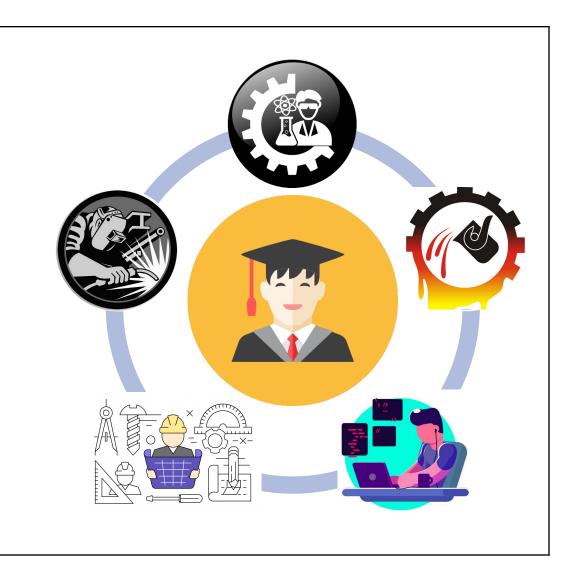
Magics, Materialise

Разработка управляющих программ SprutCAM, Спрут-Технологии

Разработка управляющих программ

ПОДГОТОВКА ИНЖЕНЕРОВ БУДУЩЕГО НОЦ «ЦАТ» МГТУ ИМ. Н.Э. БАУМАНА

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ



Санкт-Петербургский Политехнический Университет Петра Великого

3 лидера по внедрению аддитивных технологий в образовательную деятельность

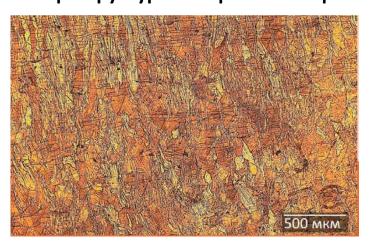
В настоящее время готовится проект государственного образовательного стандарта «Аддитивные технологии»

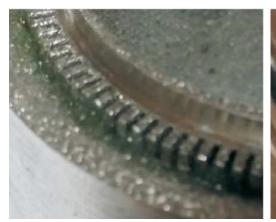
ИЗГОТОВЛЕНИЕ ТРАКТА ОХЛАЖДЕНИЯ МОДЕЛЬНОЙ КАМЕРЫ СГОРАНИЯ МЕТОДОМ СЕЛЕКТИВНОГО ЛАЗЕРНОГО ПЛАВЛЕНИЯ

Инициатор проекта: Кафедра Э1 «Ракетные двигатели»

Исполнитель: НОЦ «Центр аддитивных технологий»

Соисполнитель: ООО «Титан-Авангард»

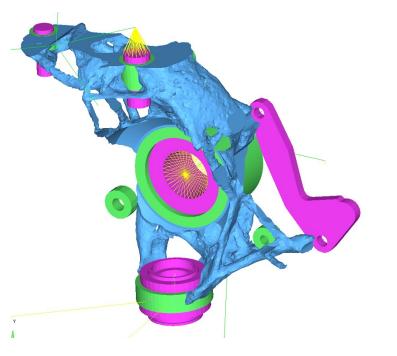

3D-модель тракта охлаждения


Тракта охлаждения из ПР-Брх

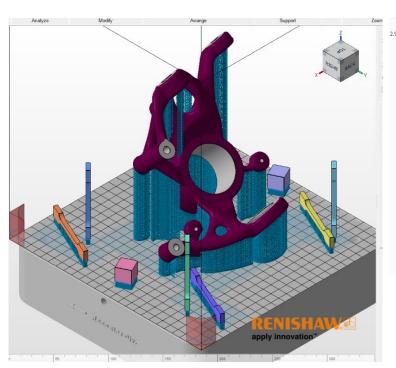
Микроструктура материала ПР-БрХ

Микро-каналы тракта охлаждения

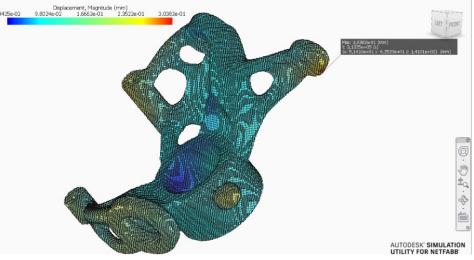
ИЗГОТОВЛЕНИЕ ПОВОРОТНОГО КУЛАКА ПОДВЕСКИ КВАДРОЦИКЛА МЕТОДОМ СЕЛЕКТИВНОГО ЛАЗЕРНОГО ПЛАВЛЕНИЯ



Инициатор проекта: Кафедра СМ10 «Колесные машины»


Исполнитель: НОЦ «Центр аддитивных технологий»

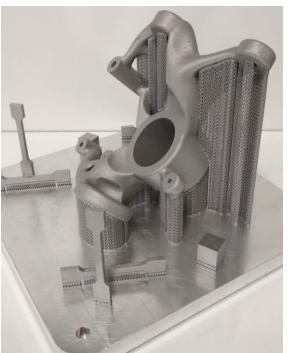
Соисполнитель: ООО «ОСТЕК-СМТ»


Разработка бионического дизайна Autodesk Fusion 2020

Подготовка к печати в программной среде Netfabb Ultimate 2020

Симуляция печати в программной среде Netfabb Local Simulation 2020

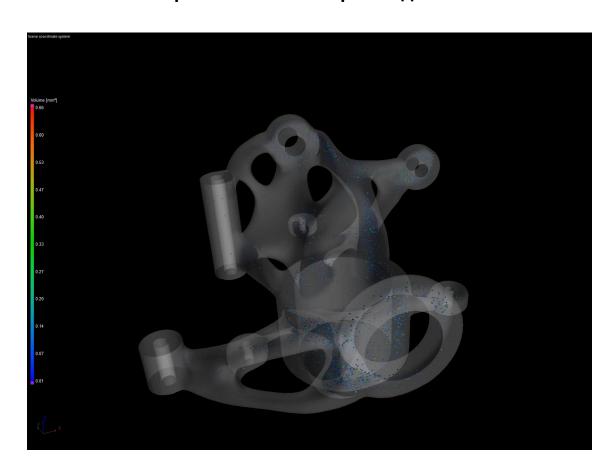
ИЗГОТОВЛЕНИЕ ПОВОРОТНОГО КУЛАКА ПОДВЕСКИ КВАДРОЦИКЛА МЕТОДОМ СЕЛЕКТИВНОГО ЛАЗЕРНОГО ПЛАВЛЕНИЯ



Инициатор проекта: Кафедра СМ10 «Колесные машины»

Исполнитель: НОЦ «Центр аддитивных технологий»

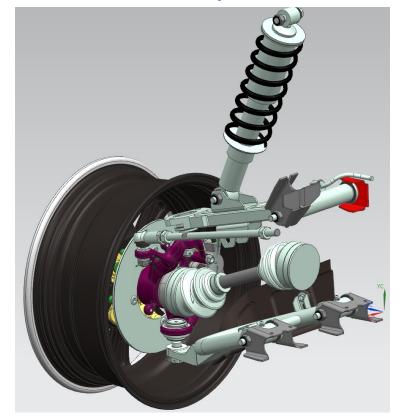
Соисполнитель: ООО «ОСТЕК-СМТ»


Печать изделия и образцов свидетелей

Постобработка изделия (термообработка и дробеструйная обработка)

Неразрушающий контроль пористости и геометрии изделия

ИЗГОТОВЛЕНИЕ ПОВОРОТНОГО КУЛАКА ПОДВЕСКИ КВАДРОЦИКЛА МЕТОДОМ СЕЛЕКТИВНОГО ЛАЗЕРНОГО С 5 L C ПЛАВЛЕНИЯ



Инициатор проекта: Кафедра СМ10 «Колесные машины»

Исполнитель: НОЦ «Центр аддитивных технологий»

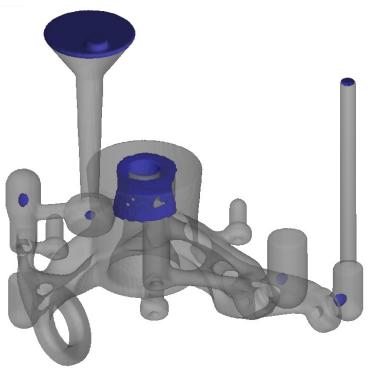
Соисполнитель: ООО «ОСТЕК-СМТ»

Узловая сборка

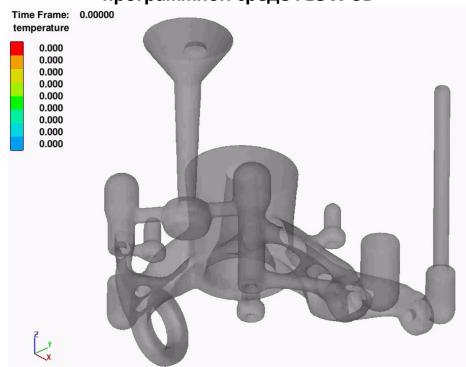
Проведение испытаний в цехе

Проведение испытаний на полигоне

ИЗГОТОВЛЕНИЕ ПОВОРОТНОГО КУЛАКА ПОДВЕСКИ КВАДРОЦИКЛА МЕТОДОМ ЛИТЬЯ В НАПЕЧАТАННЫЕ ПЕСЧАНО-ПОЛИМЕРНЫЕ ФОРМЫ


Инициатор проекта: Кафедра СМ10 «Колесные машины»

Исполнитель: НОЦ «Центр аддитивных технологий»


Соисполнитель: Кафедра МТ5 «Литейные технологии»

Разработка бионического дизайна Autodesk Fusion 2020

Разработка литниковой системы

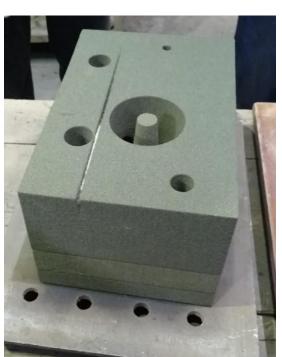
Симуляция процесса литья в программной среде FLOW 3D

ИЗГОТОВЛЕНИЕ ПОВОРОТНОГО КУЛАКА ПОДВЕСКИ КВАДРОЦИКЛА МЕТОДОМ ЛИТЬЯ В НАПЕЧАТАННЫЕ ПЕСЧАНО-ПОЛИМЕРНЫЕ ФОРМЫ

Инициатор проекта: Кафедра СМ10 «Колесные машины»

Исполнитель: НОЦ «Центр аддитивных технологий»

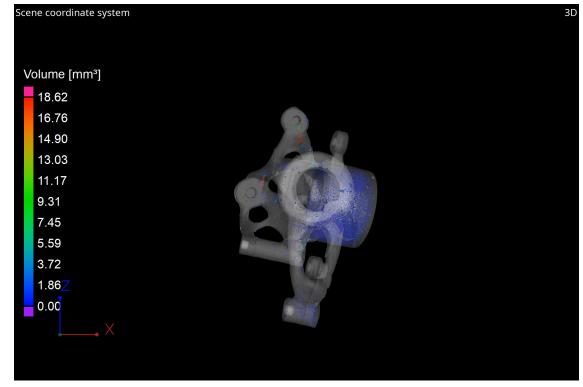
Соисполнитель: Кафедра МТ5 «Литейные технологии»


Печать песчано-полимерной формы для литья

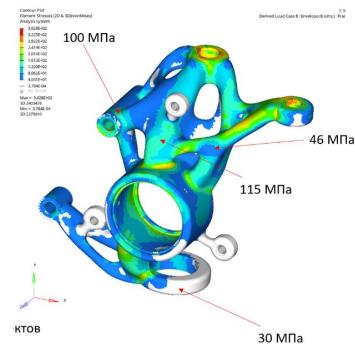
Сборка песчано-полимерной формы

Гравитационное литье в песчанополимерную форму и извлечение отливки

ИЗГОТОВЛЕНИЕ ПОВОРОТНОГО КУЛАКА ПОДВЕСКИ КВАДРОЦИКЛА МЕТОДОМ ЛИТЬЯ В НАПЕЧАТАННЫЕ ПЕСЧАНО-ПОЛИМЕРНЫЕ ФОРМЫ


Инициатор проекта: Кафедра СМ10 «Колесные машины»

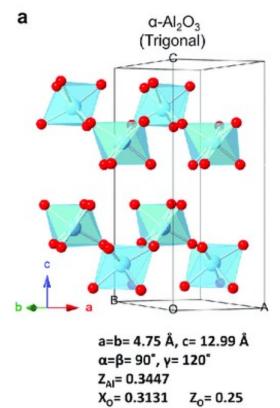
Исполнитель: НОЦ «Центр аддитивных технологий»


Соисполнитель: Кафедра МТ5 «Литейные технологии»

Постобработка отливки (термообработка и дробеструйная Неразрушающий контроль пористости и геометрии изделия

обработка)

Анализ напряжений в зонах пор и дефектов литья



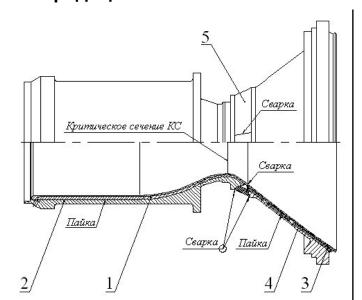
ИЗГОТОВЛЕНИЕ ПОРШНЯ ДВС ИЗ АЛЮМОКЕРАМИЧЕСКОГО КОМПОЗИТА МЕТОДОМ КОАКСИАЛЬНОГО ЛАЗЕРНОГО ПЛАВЛЕНИЯ

Инициатор проекта: НОЦ «Поршневое двигателестроение и спецтехника»

Исполнитель: НОЦ «Центр аддитивных технологий»

Соисполнитель: Кафедра MT12 «Лазерные технологии в машиностроении»

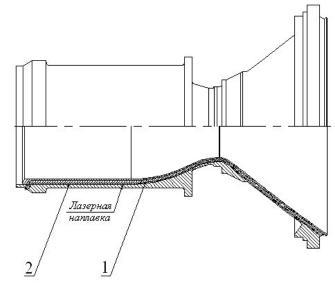
ИЗГОТОВЛЕНИЕ ПЕРСПЕКТИВНОЙ КАМЕРЫ СГОРАНИЯ ЖРД МЕТОДОМ КОАКСИАЛЬНОГО ЛАЗЕРНОГО ПЛАВЛЕНИЯ



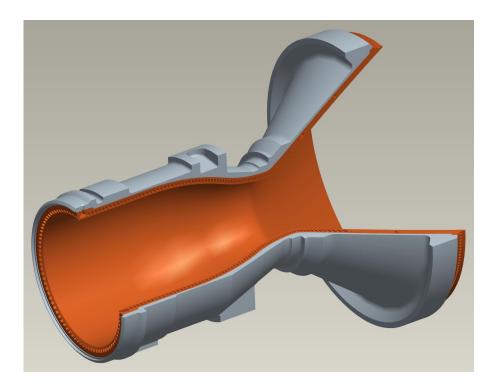
Инициатор проекта: АО «Конструкторское Бюро Химавтоматики»

Исполнитель: НОЦ «Центр аддитивных технологий»

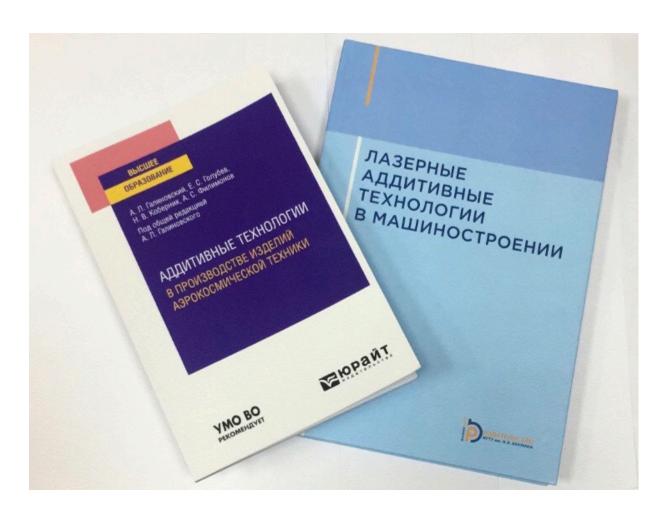
Соисполнитель: Кафедра MT12 «Лазерные технологии в машиностроении»


Конструктивная схема корпуса КС для **традиционной технологии**

- 1 Внутренняя оболочка, входная часть.
- 2 Наружняя оболочка рубашка.
- 3 Внутреняя оболочка, закритическая часть.
- 4 Наружняя оболочка конус.


5 - Накладки.

Конструктивная схема корпуса КС для аддитивной технологии


- 1 Внутренняя оболочка.
- 2 Наружняя оболочка.

Модель перспективной камеры для аддитивной технологии

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА

Спасибо за внимание!